.. _ecosystem: Ecosystems impacts ===================== Within the European domain and East Asia domains, `GAINS`_ quantifies the deposition of total nitrogen (N) as the sum of oxidized (:math:`NO_x`) and reduced (:math:`NH_y`) nitrogen compounds, as well as deposition of sulfur, using linear transfer coefficients from the `EMEP CTM`_ For quantifying ecosystems risks from acidification and eutrophication, the `GAINS`_ models employs the critical loads approach, with Critical Loads (CL) being defined to characterise the vulnerability of (parts of) an ecosystem in terms of deposition. If the CL of pollutant X at a given location is smaller than the deposition of X at that location, it is said that the CL is *exceeded* and the difference is called *exceedance*. Eutrophication ------------------ For a critical load of eutrophication :math:`CL_{eut}N` (also called CL of nutrient N), the exceedance :math:`Ex_{eut}N` for a deposition :math:`N_{dep}` is calculated as: .. math:: :nowrap: :label: ex_eut_n \begin{equation} Ex_{eut}(N_{dep}) = \max\{0, N_{dep} - CL_{eut}N\} = \begin{cases} N_{dep} - CL_{eut}N & \text{if } N_{dep} > CL_{eut}N \\ 0 & \text{if } N_{dep} \leq CL_{eut}N \tag{1} \end{cases} \end{equation} where: ============================ ============================================================================================================================== :math:`N_{dep}, CL_{eut}N` N deposition and Critical Load of N for eutrophication respectively :math:`Ex_{eut}(N_{dep})` Exceedance of N eutrophication Critical Load for a given N deposition :math:`N_{dep}` ============================ ============================================================================================================================== In case exceedances are negative, they are simply set to zero. Acidification ---------------- For acidification impacts, there is no unique critical load of S and N acidity. Instead, acidity CL are defined by a trapezoidal-shaped critical load function (CLF), defined by the quantities :math:`CL_{max}S`, :math:`CL_{min}N`, and :math:`CL_{max}N`. Thus, the exceedance is defined as the sum of the N- and S-deposition reductions needed to reach the closest point on the CLF, with zero exceedance for deposition pairs (:math:`N_{dep}`, :math:`S_{dep}`) lying below the CLF (see below Figure **1**). .. _fig-acidity_CL: .. figure:: /_static/acidity_cl.png :align: center **Figure 1** Critical Load Function (CLF) for acidifying Sulfur and Nitrogen defined by :math:`CL_{max}S`, :math:`CL_{min}N`, and :math:`CL_{max}N` (thick black line). The grey-shaded area below the CLF (region 0) defines deposition pairs (:math:`N_{dep}`, :math:`S_{dep}`) for which there is non-exceedance. The points *E1* to *E4* refer to deposition pairs in four different regions and the way the exceedance (:math:`N_{ex}`, :math:`S_{ex}`) is computed for a point in Region 2. Given the above Figure **1**, the exceedance of N and S acidity CLs is obtained as follows: .. math:: :nowrap: :label: ex_acid \begin{equation} Ex_{ac}(N_{dep},S_{dep}) = \begin{cases} 0 & \text{if } (N_{dep},S_{dep}) \in \text{Region } 0 \\ N_{dep} - CL_{max}N + S_{dep} & \text{if } (N_{dep},S_{dep}) \in \text{Region } 1 \\ N_{dep} - N_0 + S_{dep} - S_0 = (N_{ex},S_{ex}) & \text{if } (N_{dep},S_{dep}) \in \text{Region } 2 \\ N_{dep} - CL_{min}N + S_{dep} - CL_{max}S & \text{if } (N_{dep},S_{dep}) \in \text{Region } 3 \\ S_{dep} - CL_{max}S & \text{if } (N_{dep},S_{dep}) \in \text{Region } 4 \tag{2} \end{cases} \end{equation} where: ================================================================ =========================================================================================================================================== :math:`N_0, S_0, N_{dep},S_{dep},CL_{max}S,CL_{min}N,CL_{max}N` N and S deposition for point Z2, N and S deposition, maximum Critical Load of S, and minimum and maximum Critical Load of N respectively :math:`Ex_{ac}(N_{dep},S_{dep})` Exceedance of N and S acidity Critical Load for a given deposition pair (:math:`N_{dep}`, :math:`S_{dep}`) ================================================================ =========================================================================================================================================== To obtain a single exceedance value for a given grid cell or an entire region, `GAINS`_ computes the *Average Accumulated Exceedance* (AAE), defined as follows: .. math:: :nowrap: :label: aae \begin{align} AAE = \frac {\sum_{j=1}^n A_j Ex_j} {\sum_{j=1}^n A_j} \tag{3} \end{align} where: ==================== ============================================================================================================================= *j, n* Ecosystem, number of ecosystems respectively :math:`A_j` Area of ecosystem j :math:`Ex_j` Exceedance of N or S Critical Load for ecosystem A_j AAE Average Accumulated Exceedance of N or S Critical Load ==================== ============================================================================================================================= The AAE is thus expressed as the area-weighted exceedance of the CLs for the individual ecosystems. To remain consistent with the latter definition, :math:`Ex_j` needs to be set to zero if the CL is not exceeded. .. _`GAINS`: http://gains.iiasa.ac.at/models/ .. _`EMEP CTM`: https://github.com/metno/emep-ctm